Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(7): 3092-3106, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617802

RESUMO

Ionic charge transport is a ubiquitous language of communication in biological systems. As such, bioengineering is in constant need of innovative, soft, and biocompatible materials that facilitate ionic conduction. Low molecular weight gelators (LMWGs) are complex self-assembled materials that have received increasing attention in recent years. Beyond their biocompatible, self-healing, and stimuli responsive facets, LMWGs can be viewed as a "solid" electrolyte solution. In this work, we investigate 3,4-ethylenedioxythiophene (EDOT) as a capping group for a small peptide library, which we use as a system to understand the relationship between modes of assembly and charge transport in supramolecular gels. Through a combination of techniques including small-angle neutron scattering (SANS), NMR-based Van't Hoff analysis, atomic force microscopy (AFM), rheology, four-point probe, and electrochemical impedance spectroscopy (EIS), we found that modifications to the peptide sequence result in distinct assembly pathways, thermodynamic parameters, mechanical properties, and ionic conductivities. Four-point probe conductivity measurements and electrochemical impedance spectroscopy suggest that ionic conductivity is approximately doubled by programmable gel assemblies with hollow cylinder morphologies relative to gels containing solid fibers or a control electrolyte. More broadly, it is hoped this work will serve as a platform for those working on charge transport of aqueous soft materials in general.

2.
Angew Chem Int Ed Engl ; 63(14): e202314786, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38438780

RESUMO

Due to the variety of roles served by the cell membrane, its composition and structure are complex, making it difficult to study. Bioorthogonal reactions, such as the strain promoted azide-alkyne cycloaddition (SPAAC), are powerful tools for exploring the function of biomolecules in their native environment but have been largely unexplored within the context of lipid bilayers. Here, we developed a new approach to study the SPAAC reaction in liposomal membranes using azide- and strained alkyne-functionalized Förster resonance energy transfer (FRET) dye pairs. This study represents the first characterization of the SPAAC reaction between diffusing molecules inside liposomal membranes. Potential applications of this work include in situ bioorthogonal labeling of membrane proteins, improved understanding of membrane dynamics and fluidity, and the generation of new probes for biosensing assays.


Assuntos
Bicamadas Lipídicas , Lipossomos , Lipossomos/química , Reação de Cicloadição , Azidas/química , Alcinos/química
3.
ACS Nano ; 17(12): 11713-11728, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37279338

RESUMO

The intrinsic heterogeneity of many nanoformulations is currently challenging to characterize on both the single particle and population level. Therefore, there is great opportunity to develop advanced techniques to describe and understand nanomedicine heterogeneity, which will aid translation to the clinic by informing manufacturing quality control, characterization for regulatory bodies, and connecting nanoformulation properties to clinical outcomes to enable rational design. Here, we present an analytical technique to provide such information, while measuring the nanocarrier and cargo simultaneously with label-free, nondestructive single particle automated Raman trapping analysis (SPARTA). We first synthesized a library of model compounds covering a range of hydrophilicities and providing distinct Raman signals. These compounds were then loaded into model nanovesicles (polymersomes) that can load both hydrophobic and hydrophilic cargo into the membrane or core regions, respectively. Using our analytical framework, we characterized the heterogeneity of the population by correlating the signal per particle from the membrane and cargo. We found that core and membrane loading can be distinguished, and we detected subpopulations of highly loaded particles in certain cases. We then confirmed the suitability of our technique in liposomes, another nanovesicle class, including the commercial formulation Doxil. Our label-free analytical technique precisely determines cargo location alongside loading and release heterogeneity in nanomedicines, which could be instrumental for future quality control, regulatory body protocols, and development of structure-function relationships to bring more nanomedicines to the clinic.


Assuntos
Lipossomos , Nanomedicina , Humanos , Nanomedicina/métodos
4.
BMC Bioinformatics ; 24(1): 237, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277712

RESUMO

BACKGROUND: Stochastic optical reconstruction microscopy (STORM), a super-resolution microscopy technique based on single-molecule localizations, has become popular to characterize sub-diffraction limit targets. However, due to lengthy image acquisition, STORM recordings are prone to sample drift. Existing cross-correlation or fiducial marker-based algorithms allow correcting the drift within each channel, but misalignment between channels remains due to interchannel drift accumulating during sequential channel acquisition. This is a major drawback in multi-color STORM, a technique of utmost importance for the characterization of various biological interactions. RESULTS: We developed RegiSTORM, a software for reducing channel misalignment by accurately registering STORM channels utilizing fiducial markers in the sample. RegiSTORM identifies fiducials from the STORM localization data based on their non-blinking nature and uses them as landmarks for channel registration. We first demonstrated accurate registration on recordings of fiducials only, as evidenced by significantly reduced target registration error with all the tested channel combinations. Next, we validated the performance in a more practically relevant setup on cells multi-stained for tubulin. Finally, we showed that RegiSTORM successfully registers two-color STORM recordings of cargo-loaded lipid nanoparticles without fiducials, demonstrating the broader applicability of this software. CONCLUSIONS: The developed RegiSTORM software was demonstrated to be able to accurately register multiple STORM channels and is freely available as open-source (MIT license) at https://github.com/oystein676/RegiSTORM.git and https://doi.org/10.5281/zenodo.5509861 (archived), and runs as a standalone executable (Windows) or via Python (Mac OS, Linux).


Assuntos
Algoritmos , Microscopia , Microscopia/métodos , Software
5.
ACS Cent Sci ; 8(9): 1238-1257, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36188342

RESUMO

Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.

6.
J Extracell Vesicles ; 11(6): e12238, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35716060

RESUMO

Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Vesículas Extracelulares/metabolismo , Congelamento , Humanos , Ácidos Nucleicos/metabolismo , Trealose/metabolismo
7.
Bioconjug Chem ; 33(4): 736-746, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35362952

RESUMO

Liposome-based drug delivery systems are widely used to improve drug pharmacokinetics but can suffer from slow and unspecific release of encapsulated drugs. Membrane-active peptides, based on sequences derived or inspired from antimicrobial peptides (AMPs), could offer means to trigger and control the release. Cholesterol is used in most liposomal drug delivery systems (DDS) to improve the stability of the formulation, but the activity of AMPs on cholesterol-rich membranes tends to be very low, complicating peptide-triggered release strategies. Here, we show a de novo designed AMP-mimetic peptide that efficiently triggers content release from cholesterol-containing lipid vesicles when covalently conjugated to headgroup-functionalized lipids. Binding to vesicles induces peptide folding and triggers a lipid phase separation, which in the presence of cholesterol results in high local peptide concentrations at the lipid bilayer surface and rapid content release. We anticipate that these results will facilitate the development of peptide-based strategies for controlling and triggering drug release from liposomal drug delivery systems.


Assuntos
Bicamadas Lipídicas , Peptídeos , Colesterol/química , Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas/química , Lipossomos/química , Peptídeos/química
8.
Adv Mater ; 34(26): e2200839, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35358374

RESUMO

Lipid nanoparticles (LNPs) are versatile structures with tunable physicochemical properties that are ideally suited as a platform for vaccine delivery and RNA therapeutics. A key barrier to LNP rational design is the inability to relate composition and structure to intracellular processing and function. Here Single Particle Automated Raman Trapping Analysis (SPARTA) is combined with small-angle X-ray and neutron scattering (SAXS/SANS) techniques to link LNP composition with internal structure and morphology and to monitor dynamic LNP-phospholipase D (PLD) interactions. This analysis demonstrates that PLD, a key intracellular trafficking mediator, can access the entire LNP lipid membrane to generate stable, anionic LNPs. PLD activity on vesicles with matched amounts of enzyme substrate is an order of magnitude lower, indicating that the LNP lipid membrane structure can be used to control enzyme interactions. This represents an opportunity to design enzyme-responsive LNP solutions for stimuli-responsive delivery and diseases where PLD is dysregulated.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Lipossomos , Nanopartículas/química , Fosfolipases , RNA Interferente Pequeno/química , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Nanoscale ; 14(12): 4690-4704, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262538

RESUMO

We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.

10.
Commun Biol ; 5(1): 185, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233031

RESUMO

The therapeutic and research potentials of oligonucleotides (ONs) have been hampered in part by their inability to effectively escape endosomal compartments to reach their cytosolic and nuclear targets. Splice-switching ONs (SSOs) can be used with endosomolytic small molecule compounds to increase functional delivery. So far, development of these compounds has been hindered by a lack of high-resolution methods that can correlate SSO trafficking with SSO activity. Here we present in-depth characterization of two novel endosomolytic compounds by using a combination of microscopic and functional assays with high spatiotemporal resolution. This system allows the visualization of SSO trafficking, evaluation of endosomal membrane rupture, and quantitates SSO functional activity on a protein level in the presence of endosomolytic compounds. We confirm that the leakage of SSO into the cytosol occurs in parallel with the physical engorgement of LAMP1-positive late endosomes and lysosomes. We conclude that the new compounds interfere with SSO trafficking to the LAMP1-positive endosomal compartments while inducing endosomal membrane rupture and concurrent ON escape into the cytosol. The efficacy of these compounds advocates their use as novel, potent, and quick-acting transfection reagents for antisense ONs.


Assuntos
Oligonucleotídeos Antissenso , Oligonucleotídeos , Endossomos/metabolismo , Membranas Intracelulares , Lisossomos , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia
12.
Langmuir ; 37(40): 11909-11921, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581180

RESUMO

Short-chain alcohols (i.e., ethanol) can induce membrane interdigitation in saturated-chain phosphatidylcholines (PCs). In this process, alcohol molecules intercalate between phosphate heads, increasing lateral separation and favoring hydrophobic interactions between opposing acyl chains, which interpenetrate forming an interdigitated phase. Unraveling mechanisms underlying the interactions between ethanol and model lipid membranes has implications for cell biology, biochemistry, and for the formulation of lipid-based nanocarriers. However, investigations of ethanol-lipid membrane systems have been carried out in deionized water, which limits their applicability. Here, using a combination of small- and wide-angle X-ray scattering, small-angle neutron scattering, and all-atom molecular dynamics simulations, we analyzed the effect of varying CaCl2 and NaCl concentrations on ethanol-induced interdigitation. We observed that while ethanol addition leads to the interdigitation of bulk phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers in the presence of CaCl2 and NaCl regardless of the salt concentration, the ethanol-induced interdigitation of vesicular DPPC depends on the choice of cation and its concentration. These findings unravel a key role for cations in the ethanol-induced interdigitation of lipid membranes in either bulk phase or vesicular form.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Etanol , Cátions , Fosfatidilcolinas , Espalhamento a Baixo Ângulo
13.
ACS Nano ; 15(9): 13993-14021, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34505766

RESUMO

Oligonucleotides (ONs) comprise a rapidly growing class of therapeutics. In recent years, the list of FDA-approved ON therapies has rapidly expanded. ONs are small (15-30 bp) nucleotide-based therapeutics which are capable of targeting DNA and RNA as well as other biomolecules. ONs can be subdivided into several classes based on their chemical modifications and on the mechanisms of their target interactions. Historically, the largest hindrance to the widespread usage of ON therapeutics has been their inability to effectively internalize into cells and escape from endosomes to reach their molecular targets in the cytosol or nucleus. While cell uptake has been improved, "endosomal escape" remains a significant problem. There are a range of approaches to overcome this, and in this review, we focus on three: altering the chemical structure of the ONs, formulating synthetic, lipid-based nanoparticles to encapsulate the ONs, or biologically loading the ONs into extracellular vesicles. This review provides a background to the design and mode of action of existing FDA-approved ONs. It presents the most common ON classifications and chemical modifications from a fundamental scientific perspective and provides a roadmap of the cellular uptake pathways by which ONs are trafficked. Finally, this review delves into each of the above-mentioned approaches to ON delivery, highlighting the scientific principles behind each and covering recent advances.


Assuntos
Vesículas Extracelulares , Nanopartículas , Lipídeos , Oligonucleotídeos
14.
ACS Nano ; 14(12): 17333-17353, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33290039

RESUMO

Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (-OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as -OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating -OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth.

15.
Langmuir ; 36(14): 3912-3923, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32250120

RESUMO

Extracellular vesicles (EVs) are secreted by the vast majority of cells and are being intensively studied due to their emerging involvement in a variety of cellular communication processes. However, the study of their cellular uptake and fate has been hampered by difficulty in imaging EVs against the cellular background. Here, we show that EVs combined with hydrophobic gold nanoclusters (AuNCs) can self-assemble into supraparticles, offering an excellent labeling strategy for high-resolution electron microscopic imaging in vitro. We have tracked and visualized the reuptake of breast cancer cell-derived EV AuNC supraparticles into their parent cells, from early endocytosis to lysosomal degradation, using focused ion beam-scanning electron microscopy (FIB-SEM). The presence of gold within the EVs and lysosomes was confirmed via DF-STEM EDX analysis of lift-out sections. The demonstrated formation of AuNC EV supraparticles will facilitate future applications in EV imaging as well as the EV-assisted cellular delivery of AuNCs.

16.
Biomaterials ; 226: 119406, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558349

RESUMO

The study of sophisticated biomaterials and their cellular targets requires visualization methods with exquisite spatial and temporal resolution to discern cell organelles and molecular events. Monitoring cell-material interactions at high resolution is key for the continued development and optimization of biomaterials, for monitoring cell uptake of cargo, and for understanding the cell response to extracellular cues. This review evaluates the advantages and disadvantages of different forms of electron microscopy and super-resolution microscopy in elucidating how biomaterial surface chemistry and topography can affect intracellular events at the nanoscale.


Assuntos
Materiais Biocompatíveis , Organelas , Microscopia Eletrônica
17.
Adv Drug Deliv Rev ; 138: 259-275, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30947810

RESUMO

Over the past few decades, a range of vesicle-based drug delivery systems have entered clinical practice and several others are in various stages of clinical translation. While most of these vesicle constructs are lipid-based (liposomes), or polymer-based (polymersomes), recently new classes of vesicles have emerged that defy easy classification. Examples include assemblies with small molecule amphiphiles, biologically derived membranes, hybrid vesicles with two or more classes of amphiphiles, or more complex hierarchical structures such as vesicles incorporating gas bubbles or nanoparticulates in the lumen or membrane. In this review, we explore these recent advances and emerging trends at the edge and just beyond the research fields of conventional liposomes and polymersomes. A focus of this review is the distinct behaviors observed for these classes of vesicles when exposed to physical stimuli - such as ultrasound, heat, light and mechanical triggers - and we discuss the resulting potential for new types of drug delivery, with a special emphasis on current challenges and opportunities.


Assuntos
Sistemas de Liberação de Medicamentos , Animais , Temperatura Alta , Humanos , Luz , Lipossomos , Fenômenos Mecânicos , Polímeros , Ondas Ultrassônicas
18.
Langmuir ; 35(18): 6064-6074, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977658

RESUMO

Liposomes are well-established systems for drug delivery and biosensing applications. The design of a liposomal carrier requires careful choice of lipid composition and formulation method. These determine many vesicle properties including lamellarity, which can have a strong effect on both encapsulation efficiency and the efflux rate of encapsulated active compounds. Despite this, a comprehensive study on how the lipid composition and formulation method affect vesicle lamellarity is still lacking. Here, we combine small-angle neutron scattering and cryogenic transmission electron microscopy to study the effect of three different well-established formulation methods followed by extrusion through 100 nm polycarbonate membranes on the resulting vesicle membrane structure. Specifically, we examine vesicles formulated from the commonly used phospholipids 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) via film hydration followed by (i) agitation on a shaker or (ii) freeze-thawing, or (iii) the reverse-phase evaporation vesicle method. After extrusion, up to half of the total lipid content is still assembled into multilamellar structures. However, we achieved unilamellar vesicle populations when as little as 0.1 mol % PEG-modified lipid was included in the vesicle formulation. Interestingly, DPPC with 5 mol % PEGylated lipid produces a combination of cylindrical micelles and vesicles. In conclusion, our results provide important insights into the effect of the formulation method and lipid composition on producing liposomes with a defined membrane structure.

19.
Angew Chem Int Ed Engl ; 58(10): 2958-2978, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29926520

RESUMO

Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.

20.
ACS Cent Sci ; 4(8): 1023-1030, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159399

RESUMO

Understanding the origins of lipid membrane bilayer rearrangement in response to external stimuli is an essential component of cell biology and the bottom-up design of liposomes for biomedical applications. The enzymes phospholipase C and D (PLC and PLD) both cleave the phosphorus-oxygen bonds of phosphate esters in phosphatidylcholine (PC) lipids. The atomic position of this hydrolysis reaction has huge implications for the stability of PC-containing self-assembled structures, such as the cell wall and lipid-based vesicle drug delivery vectors. While PLC converts PC to diacylglycerol (DAG), the interaction of PC with PLD produces phosphatidic acid (PA). Here we present a combination of small-angle scattering data and all-atom molecular dynamics simulations, providing insights into the effects of atomic-scale reorganization on the supramolecular assembly of PC membrane bilayers upon enzyme-mediated incorporation of DAG or PA. We observed that PC liposomes completely disintegrate in the presence of PLC, as conversion of PC to DAG progresses. At lower concentrations, DAG molecules within fluid PC bilayers form hydrogen bonds with backbone carbonyl oxygens in neighboring PC molecules and burrow into the hydrophobic region. This leads initially to membrane thinning followed by a swelling of the lamellar phase with increased DAG. At higher DAG concentrations, localized membrane tension causes a change in lipid phase from lamellar to the hexagonal and micellar cubic phases. Molecular dynamics simulations show that this destabilization is also caused in part by the decreased ability of DAG-containing PC membranes to coordinate sodium ions. Conversely, PLD-treated PC liposomes remain stable up to extremely high conversions to PA. Here, the negatively charged PA headgroup attracts significant amounts of sodium ions from the bulk solution to the membrane surface, leading to a swelling of the coordinated water layer. These findings are a vital step toward a fundamental understanding of the degradation behavior of PC lipid membranes in the presence of these clinically relevant enzymes, and toward the rational design of diagnostic and drug delivery technologies for phospholipase-dysregulation-based diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...